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INTRODUCTION 

The linear theory of the propagation of a laser beam in a random or 
turbulent medium, which is valid for a low power laser, has been widely 
investigated D,2D.  However, a high energy laser beam will modify the 
medium by various effects, such as inducing turbulence in a quiescent 
medium or changing the state of previously existing turbulence.  Such a 
modified medium will in turn change the mode of propagation.  Experiments 
have shown that a laser beam can indeed induce turbulence, and some 
criteria for the onset of turbulence have been developed L3,4,5l|.  In 
the present work, we shall develop a theory of thermal turbulence as 
induced by a laser beam.  Here the laser acts as a source of heat which 
is deposited into the fluid medium by conduction and convection, due to 
absorption and beam inhomogeneity, respectively; in a self-consistent 
way, the thermal fluctuations also modify the heat source.  The nonlinear 
equation describing the fluctuations of temperature gives rise to a 
hierarchy which needs to be closed.  The method of cascade decomposition, 
which was developed by Tchen to close the hierarchy and which has been 
successfully applied to hydrodynamic and plasma turbulence, will be 
extended to laser induced turbulence Q6,7~J. 

In the present work we neglect the acoustic effects, as is permitted in 
all problems of thermal oscillations under the Boussinesq approximation. 
The buoyancy effect which is retained in the general formulation is 
found to be negligible in the inertia and dissipation subranges of the 
spectrum. 

FUNDAMENTAL EQUATIONS 

The fundamental equations which describe the fluide motion in the atmos- 
phere in the presence of laser heating are the Navier-Stokes equation 
of momentum, 

p IFF + ~u,v^ 
= -Vp + V(p v V y) + 1 V(p v V u) -6 g(T-T0) (I) 

the equation of continuity, 

8p_ 
y^ + V (p y) = o (2) 

and  the equation  of   heat, 

3T 2 

pcv-^r+uVT=-pVu  +  kVT+*+aI (3) 
"     01 



Here p is the density, u is the fluid velocity, T is the temperature, 
cv is the specific heat at constant volume, <J> is the Rayleigh dissipation 
function, I is the intensity of the laser beam, and a   is the absorption 
coefficient. The buoyancy force is represented in Eq. (I) by 

(p - po) g = - B(T-To) g (4) 

where g is the acceleration of gravity, and 6 is the coefficient 
of expansion. 

It is seen that the effect of the laser resides in (a) the heat 
disposition term al in Eq. (3) which modified the temperature 
distribution, and (b) the buoyancy force in the momentum equation (I), 
modifying the velocity distribution. 

In problems of thermal convection and diffusion, it is customary to 
introduce the Boussinesq approximation, which neglects the acoustic or 
compressibility effect in all terms except the buoyancy term of Eq. (I). 
This approximation reduces Eq. (2) to 

V«u - 0 (5) 

We shall also neglect the Rayleigh dissipation function in Eq. (3). The 
system of Eqs. (I), (3), and (5) determine the modifications of the 
atmospheric motions by the heat deposition from the laser.  It is to be 
remarked that in the absence of such a heat deposition, the above system 
of equations degenerates to the one governing the classical problem of 
thermaI i nstabi Iity. 

In the present study it is necessary to specify the heat deposition term 
al of Eq. (3).  We note that I is related to the index of refraction n 
on the basis of photon conservation, and subsequently is related to the 
temperature by an equation of state.  In principle, these relations can 
be derived from time-dependent microscopic models.  However, their 
governing time scale is much smaller than the time scale of the turbulent 
motion, and consequently a quasi-stationary approximation, known as the 
adiabatic approximation, can be used. 

This amounts to assuming that the heat deposition is spontaneous and 
localized. This requires that the approach to equilibrium of the heating 
process is faster than that of the turbulent process. This condition is 
usually fulfilled.  Under such a circumstance we wish to find a relation 
analogous to that between the energy flux and the gradient from the 
thermodynamics of irreversible processes. A satisfactory derivation of 
such a relation requires the analysis of the equation of wave propagation 
in a medium of variable index of refraction and the study of the absorp- 
tion or heat deposition during the propagation. A diffusion theory of 
absorption of the laser beam intensity on the basis of a stochastic 



theory will be developed in a later report.  In this paper we shall 
present a heuristic argument. To that end, we know that a variation of 
temperature gradient 6(VT), which corresponds to a variation in 
refractive index gradient 6(^1), will cause a thermal distortion of the 
beam intensity, expressed in the form 

61    2   
v«n „ . 

-f = I    D-— (6a) 

This is analogous to the relation between flux and gradient in the 
thermodynamics of irreversible processes, as mentioned earlier. Here I 
is a scale length characteristic of the propagation pathlength in the 
turbulent medium (it should not be confused with the inner and outer 
scales of turbulence), and D is a differential operator 

D = V + VK,n I (6b) 

Formula (6a) is a variant of the equation developed by Gebhardt and Smith 
E8H.  We may consider that Eq. (6a) serves as a relation of state which, 
when combined with the constituitive equation 

5" • Hrl6T <7) 

will give the equivalent value of the temperature increase 6T correspond- 
ing to the energy deposition 61, as follows: 

61 = A D»V 6 T (8a) 

with 

A- -4lSrl I (8b) n I 3T /p 

We shall assume that a turbulent fluctuation follows such a variation, 
and shall rewrite Eq. (8a) as 

I1 = A D«V 6 (9) 

Here I1 and 6 are turbulent fluctuations of radiation intensity and 
temperature, respectively, while Io and To are the corresponding mean 
quantities; further, 



D = V + V £n I, in 
3T 

(10) 

p J o 

It is to be noted that A and A > 0, because On/3T) and On/3T)  are 
negative for most fluids. ° 

The relationship between I' and 9, as expressed by Eq. (9), is analogous 
to the formula for the beam intensity developed by Gebhardt and Smith 
for the geometric optics regime DO. This formula has been applied by 
Collett, et. a I., to the determination of intensity correlations of a 
laser beam in a turbulent medium [_9~].     The results obtained by this method 
are identical to the more rigorous method of wave propagation used by Ho, 
when the effects of diffraction are omitted [I0U. That approximation is 
valid, because the optical length scale is very small compared to the 
scale of the turbulence. 

The system of Eqs. (3) and (9) forms the fundamental differential 
equations governing the interaction of a laser beam with the atmospheric 
medium, as described by the variables u, p, T, and I'. 

EQUATIONS OF TURBULENT MOTIONS 

We decompose the four variables p, T, u, and I into a mean part and a 
fIuctuation: 

9 • y + u 
P = Po +   P' 

T = To + 6 

I = I0 + I' (II) 

In the absence of a mean wind, u represents a velocity fluctuation. 

By substituting Eq. (II) into Eqs. (I), (3), and (5), we find the follow- 
ing four equations determining the four variables u', p', 9, and I1: 

at + u v y V p' + V V2 u + u V u (12) 

V u = 0 (13) 

39 — 
-jpp+uv9  =  -uVT0  +  u W  +   (k/pcv)   V29  +   (<Vpcv)   I (14) 

8 



I' = A (v2e - r \B) (15) 

with 

r = - Hn I0 (16a) 

where r-1 represents the scale of the laser beam. 

As a result of the turbulent heating of the atmospheric medium by a beam, 
we expect a distribution of the intensity of temperature fluctuation, 
with 

7 in  62 (16b) 

where A"1 is a scale in the profile of 02 analogous to Eq. (16a). 

It is well known that the buoyancy controls the large scale motions of 
the velocity spectrum.  This effect is negligible for the inertia and 
dissipation subranges under the present investigation, enabling us to 
decouple Eqs. (12) and (13) from Eq. (14) and (15).  Hence, we need only 
to be concerned with the thermal turbulence, and regard the velocity 
spectrum as a known quantity.  In such a circumstance, and with a 
substitution of Eq. (15) into Eq. (14), we find the thermal turbulence 
governed by the following equation of heat transfer: 

36 
gj + g.ve = - u-VTQ + V-u? + (A + u) V26 - uT-VS (17) 

The left hand side of Eq. (17) represents the time rate of change and 
the convection of the temperature fluctuation.  The right hand side 
contains a generation of temperature fluctuation from the velocity 
fluctuations in the presence of a mean temperature gradient, a conduction 
from the thermal flux by eddy motions, a molecular conduction with a 
molecular conductivity 

X  = k/pcv (18) 

a conductivity 

v  = oA/pcw (19) 



from the absorption of radiation, and finally a convection associated 
with the beam inhomogeneity. 

CASCADE DECOMPOSITION 

For the determination of the turbulent spectrum, it is necessary to make 
a Fourier analysis of Eq. CI9).  Instead of studying the behavior of 
each Fourier component, we separate the fluctuations 6 and u into two 
groups and write 

0(t,x) = 6(0)(t,x) + 6(l)(t,x) (20) 

and 

u(t,x) = y(0)(t,x) + y(l Uf,x) (21 ) 

where we define 

k 

e(0)(t,x) =    fdfe'    e(t,fc') e '-'  - (22) 

o 

and 
oo 

e(l)(t,x) =    fdfe'    e(t.fe') e ife' - (23) 
J  " 
fe 

SimiIarly, 
k 

u(0)(t,x)   =     fdfe'     u(t,fc')   e   '-'   * (24) 

o 

and 
oo 

r 

u(l)(t,x)   =     Idfc'     u(t,fe')   e  '&'   - (25) 

where 6(0),   Q^ \   u^  and  u        are truncated within the   limits  indicated 
by Eqs.   (22)  to  (25). 

10 



(26) 

In order to separate 6(0) and 6(l) from 6 in Eq. (20), and u   and u(l) 

from u in Eq. (21), we make use of an ensemble average 

<• • •> 

which gives 

<e>(D = e<o>,     <e<0)>(i) = e(0)f       <e(i>>u> = o (27) 

and 

<u>(|) = U
(0),   <u

(0))(') = u(0)
f    (B<i>yi) (28) 

The decomposition expressed by Eqs. (20) and (21) implies that the 
fluctuations 9 and u contain a zeroth rank and first rank, which represent 
macroscopic and random fluctuations, respectively, with the macroscopic 
quantity being of larger scale than the random quantity.  The ensemble 
average, Eq. (26), of first rank is an average over many realizations with 
identical macroscopic conditions, as represented by 6^0) and LT^, but 
with random 6(1) and u(l).  In this manner, the average over the random 
quantities vanishes and the same average over macroscopic quantities 
remains unaffected by Eqs. (27) and (28). 

The ensemble average of zeroth rank 

(29) 

is equivalent to the global average denoted by a bar in a homogeneous 
turbuIence. 

By means of the cascade ensemble average, Eq. (26), we can screen out the 
ranks 8^0) and 8''* from 0 in Eq. (20), and hence transform the equation 
of evolution of 8, Eq. (19), into corresponding equations of evolutions 
of 9(0) and 6(1). The details for this type of calculation can be found 
in the work of Tchen and will be omitted here E6].  The result of this 
calculation leads to 

||(0) + U
(O).V0(O) - uC0).ve(0) 

= - u(0).vTo + u + u)v
2e(0) - ur-ve(0) -<u(l).ve(l)>(l)   (30) 

i i 



and 

<e(1)5<£
(l) + y(0) V6(0) un 

= -u(l).v(To+e
(0))+cx+p)v2e(l)-yr.veu)+<ucl)-ve(l)>(l) 

noting that the addition of Eqs. (30) and (31) recovers Eq. (19). The 
last term on the right hand side of Eq. (31) will be omitted in the 
following, since it does not contribute to the formulation of 
correIations. 

We multiply Eq. (30) by 8   and take an ensemble average of zeroth rank, 

EQUATION OF SPECTRAL BALANCE 

by 8(0) and take 
as defined by Eq. (29).  We then find 

^<e^V0) +i<u
(0).ve(0)2>(0) 

= -<u(0).e(0)>(0) VTO - <e(0)v.<tj(i> e<l>><l>><0) 

• cx*> <e(0W0)>(0) -iyr.v<e{0)2>(0) (32) 

or, rewritten as 

1^7<e(0)2>(0) + {i v.<y(0)e(0)2>(0)} 

= -<y
(0)e(0)>(0).vTo - <e(0)v.<u(i)6(i)>(i)>(0) 

-(x+y) <(ve(0))2>(0) + {i(x+y)v2<e
(0)2>(0)} 

+ ^u r.A
(0)<e<0>2>(0) (33) 

where 

A(0) E V In  <6(0>2N(0) (34) 



In order to simplify Eq. (33), we assume that the turbulent motions are 
locally homogeneous. This implies that the spectral distributions are 
similarly dependent on position through the Intermediary of the para- 
meters, which are given by the mean quantities, e.g., profiles of beam, 
mean temperature and intensity of thermal turbulence, and the rate of 
dissipation of the thermal turbulence.  Under that hypothesis, we can 
neglect the terms between {...} in Eq. (33). The term proportional to 
r-A(O) is a coupling between the laser beam and thermal turbulence, and 
is therefore proportional to the product of the gradients in the beam 
profile and the turbulent intensity profile.  In this connection, we 
approximate A^CH 5 A, where A is defined by Eq. (16b), since the rank of 
Eq. (22) up to a wavenumber k  lying in the inertia subrange embodies the 
major portion of the thermal energy. 

With the above approximations, we reduce Eq. (34) to the following form: 

1^ <e(0)2>(0) =.<u(0)e(0)>(0)VTe^.<u(,)e(|)>(l)e(0)>(0) 

-Q+u) <(V9
(0))2>(0) + Y<9

(0)2
>
(0) (35a) 

with 

Y = u r«A (35b) 

We conclude that the rate of change of thermal energy <e(0)2yU) is 
governed by a production function -<u'° 9(  )  VTo, a transfer function 
-<V <u(l)etl)>(l)e(0)>(0)/ a dissipation function -(A+y)<(ve(0> )2>(0) f 

combining the effects of molecular conduction and the absorption of 
radiation, and finally a source function y^Q^^y^O)   fr0m the laser beam. 

HEAT FLUX AND EDDY CONDUCTIVITY 

In Eq. (35) there occurs a term, 

<u(l>e(l>>(l> (36) 

called eddy "thermal flux" of first rank, and a similar term of zeroth 
rank, 

<y(0)e(0)>(0) . <uQ>_ <u(l)e(|)>(|) (37) 

13 



The statistical study of molecular transport processes can be based upon 
a Langevin equation, which describes the time evolution of a fluctuation 
in the Lagrangian representation. We shall generalize the aboye Langevin 
equation to apply to a turbulent transport.  In order to do this, we note 
that Eq. (31) may serve this purpose by considering the variable t in the 
Lagrangian time derivative as a single variable, since this is the 
requirement for the calculation of the transport properties.  Effectively, 
we regard the Fourier form of Eq. (31) as a turbulent Langevin equation 
with k  as a parameter.  It will be written as follows: 

<»>(l^t,fe)  = _ u(D( + /fe) V(ToV
0)) - X*fe29(l>Ct,fe) (38) 

dt 

where T0 and 6   have weaker inhomogeneities than 6   and ir ' ', and 
\*k2   represents 

\*k2  = Xk2 +  u(fc2 + r«A) (39) 

A formal solution of Eq. (38) is 

t 

e(i>(t,fe) = - v(To+e
(0))- fdt' expC-x*fe2(t-t')J u(l)(t',fe) 

J 
o 

+ 6(0)(t=o,fe) exp(-A*fe2t) (40) 

Here we have put V(T0 + 6(0)) outside of the integral, because it varies 
slowly with time.  It follows from Eq. (40) that 

(U!"<t,fc,8"><t,|))'" = -„<!'<);> »£ + »"»> (4I) 
sj 

where 

(I)- -v(D   (42) n(l)(fe) =  fdt1 expC-A*fe2(t-t')3 (u[n(i\k)  u,1 (t,-fe)> sj  -      J \ S      ~   j        / 

o 

noting that 

(e(l)(o,fe) e(l)(t,-fe))(l) = 0 (43) 

14 



for t larger than the correlation time.  By the same token we can replace 
the upper limit t by » in Eq, (42) to gfve 

n(n(fe) - |dt' exp EA*k2(t-t')J <u(l)(t',fe) uU\t, -fe)> (44) 

For an   isotropic eddy conductivity we  have 

n(!)  =    n(l)   6   . (45) 
sj sj 

and 
TO 
r 

n(l)(fe)=-    jdt'   expCx*fe2(t-t'): <u(l)(t',k)   y(l)(t,-fc)>(l)        (46) 
3   J 

This reduces the thermal flux, Eq. (36), to 

<u<l,(t,-fe>6<l><t,fe,>(l>=-n"»(|>  3<T> ;x
e'0)> <47, 

J j 

in k  space, or to 

<u!n(t,x) eU)(t,x)>(l) = - n(l) 9^o + 9(0)) (48) 
J 8x: 

where n   is the eddy conductivity in x space. 

The turbulent transport relations, Eqs. (41) and (48), take the form 
analogous to the phenomenologicaI relations of Onsager in the thermo- 
dynamics of irreversible phenomena, stating that any flux is caused by 
the contribution of a force or gradient with a proportionality constant 
called the transport coefficient. Here we have derived such relations by 
means of a generalized Langevin equation, Eq. (38), applicable to 
turbulent motions; hence, we have determined the relevant forces and 
transport coefficient, as given by Eqs. (41). (44), (46), and (48).  A 
precise determination of the structure of n   in terms of the spectral 
function F(fe), such that 

k 

1 /,,(0)2\(0) ,    fr ^<u(0)2yo) = rdfe. F(fe. (49) 

15 



is given by Tchen C6H. We shall not enter into its detailed derivation, 
but simply write the following result: 

dfe 
F(fe') 

2   )M       w<">(fe') 
(so: 

Here the relaxation frequency is 

w(l)(fe') = fe'2 U* +  n(l)) 

= fe'2 .(I) (51) 

since the molecular conductivity A* can be assumed to be smaller than the 
eddy conductivity.  The integral equation, Eq. (50), with the relaxation 
frequency given by Eq. (51), leads to the following solution: 

.(I) 2 c^ dfe'  F(fe') fe' 2 (52) 

where c^   is a numerical coefficient evaluated for three-dimensional 
turbulence to be [_6j 

(53) 

EQUILIBRIUM RANGE OF THE SPECTRUM 

Along with the spectral fluctuation distribution F(fe) for the velocity, 
Eq. (49), we introduce a spectral distribution G(fe) for the temperature 
which is defined to be 

7<e(0)2 > 
(0) _ dfe' G(fe') (54) 

The use of Eq. (48) permits the transfer function in Eq. (35) to be 
rewritten as 

16 



<v.<u(l)e(l)>(l) 8(0)>(0) = - nd) <e(0)v2(To + e(0))>(0) 

= _ n(l) <e(O)v20(O)^(O) 

= n(l) <(ve(0))2>e(0)-in(l)v2<e(0)2>(0) 

= n(l) ^(ve(0V;(0) (55) 

with the application of local homogeneity of turbulence. 

If we introduce the notations 

k 

jo = ^(ve(0))2yo) = 2  dfe' fe'2 G(fe') (56) 

o 
and 

(0)   (I) 
n = n   + n 

we can rewrite the equation of spectral balance, Eq.»(35a), in the form: 

k 

|^r  dfe' G(fe') = - (n-nU)) (VTo)2 - Q+u)J° - n(l)J°        (58) 

fe 

+ Y  dfe' G(fe') 

or 

fe 

(I) 
Yf     dfe' G(fe') = (n - n(l))7- (X0 + n(l,)J° 

fe 

+ Y  dfe' G(fe! ) 

(59) 

where 

17 



(VTo)2 (60a) 

and 

A0 = A + u C60b) 

are called thermal vorticity and total conductivity, respectively.  The 
total conductivity includes a molecular conductivity A and a conductivity 
y enhanced by the beam.  Use has been made of Eqs. (56) and (57). 

For k =  », we reduce Eq. (59) to 

k k 

yp  fdfe' G(fe') = nl - A0J + y    fdfe' G(fe') (6 H) 

as 

n(l }(fe=») = 0,    J • J°(fe=oo) (62) 

The equilibrium range of the spectrum is defined as that range covering 
sufficiently large wave numbers such that, in the integral term on the 
left hand side of Eq. (59), the upper limit k  may be replaced by ». 
Under that circumstance, and by subtracting Eq. (59) from Eq. (61), we 
obtain the equation of spectal balance in the equilibrium range, 

CO 

n(l J + (Ao+n(' } )J° + Y J dfe' G(fe') = XoJ (63) 

THE SPECTRUM IN THE ABSENCE OF BUOYANCY 

The universal range of the spectrum is usually divided into the following 
subranges in the increasing orders of wavenumbers:  buoyancy, inertia, 
and dissipation. As mentioned earlier, the buoyancy subrange reigns over 
the largest scale of the spectrum, and will not be included in the 
present study. Consequently, the velocity spectrum in the inertial sub- 
range is given as the Kolmogorov law, 

18 



F = A e2/3 fe~5/3 C64a) 

Here e is the rate of energy dissipation and the numerical coefficient 

A is C6D 

A = 1.58 (64b) 

The spectrum, Eq. (64a), is the most commonly adopted law for the 
description of the interaction of a propagating laser beam in a turbulent 
atmosphere.  Following that law, we find the eddy conductivity from Eq. 
(52) to be 

n(l) = c3 e1/3 fe-V3 (65a) 

with Q6] 

.    I 
C, = (AAC2)2 2 I .26 (65b) 
3   4 /- 

For the derivation of the spectral function G(fe) for the temperature 
fluctuations, we consider Eq. (63), which we rewrite in the form 

oo 

r 

(Xo + n(l }) (I + J°) + Y j'dfe* G(fe') = Xo(T + J) (66) 

k 
or,   upon  dividing  by A0  + n       , 

CO 

T + J° + y(X0 + n(l 5)_1     jdfe'  G(fe') = A0(Ao+n(l V   (I + J) (67) 

\ 

We shall introduce the following notations: 

CO 

H(fe)  =    jdfe'   G(fe') C68a) 

'k 

P  =     *    4r An   (A0  +  nU)) (68b) l-<l> all 
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Q =  
X°(J  tM  •    L.    m(Xo  + n(l>) (68c) 

2(Xo + nc'))fe2 <I-*)    dfe 

*  = T5 TTT (68d) 

2fe2(Ao +  n(l >) 

and transform the integral equation, Eq. (67), into the following 
differential equation 

^+ P H = Q (69) 

with the solution 

fe 
d r 

G(fe) = dH"     dfe' Q(fe') exp[-    | rife" P(fe")D 

fe 

= - Q(fe)  - P(fe)     rife'   Q(fe')  exp[-       dfe" P(fe")] (70a) 
j 

fe fe' 

or,   in an approximate form, 
00 

G(fe)  = - Q(fe)    -    P(fe)       dfe1  Q(fe') (70b) 

fe 

valid for a weak beam factor y,  or *. 

Equation (70b), which is valid for all subranges, appears in a form too 
complex for interpretation. Therefore we shall consider them separately. 
We find: 

(a) In the inertia subrange 

G(fe) = J—    E, e-1/3(|_$ ) fe-5/3 (7|) 
3c-j  A ' 
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with 

*. = (2c3)"'(Y
3/e)l/3 fe-2/3 (72) 

(b) In the dissipation subrange 

G(fe) = ^1 El/3 exX;2(l+$d)fe " 13/3 (73) 

with 

*  • (Y/2
x°)fe"2 <74> 

In the above, e and e^ are rates of dissipations 

e = v (Vu)2 (75) 

ex = X0 (V6)2  = X0J (76) 

for the fluid and temperature fluctuations, respectively. 

The transition from the inertia to the dissipation subranges occurs at a 
critical wavenumber 

kx  = c3
3/l+(e/A3)l/lt (77) 

We conclude that the effect of the beam factor is to decrease the power 
of -5/3 in the inertia subrange and steepen the power of -13/3 in the 
dissipation subrange.  The laser heating increases Xo and J. 

CONCLUSIONS 

In the present work we have shown that a laser can induce temperature 
fluctuations which, because of their nonlinear nature, can lead to 
turbulence. Because the hydrodynamic system is nonlinear, it generates 
a "hierarchy," i.e., an infinite sequence of equations of ever increasing 
order of correlations. This is closed by the method of cascade. 
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The universal subrange, which is divided into an inertia subrange and 
a dissipation subrange, is not controlled by the buoyancy effect, so 
that the spectrum of velocity fluctuations follows the Kolmogorov law. 
The spectrum of temperature fluctuations is derived for the inertia and 
dissipation subranges, and includes the effects of enhanced diffusion 
and inhomogeneity of the laser beam. The resulting equation of spectral 
balance is in the form of a nonlinear integro-differential equation and 
determines the spectral distribution of the temperature fluctuations; 
it is solved for a turbulent state in statistical equilibrium.  It 
contains a production function due to the beam inhomogeneity, a transfer 
function which describes the transfer of energy across the spectrum 
from large eddies into small eddies, and finally a dissipation function 
which determines the dissipation of small eddies by molecular motions. 

If the temperature variable is considered as a passive sealer driven by 
a fluid turbulence obeying a Kolmogorov, it is known, by dimensional 
theories, that the temperature fluctuation will also follow the 
Kolmogorov|aw in the inertia subrange, and a fe~13/3 law in the dissipa- 
tion subrange.  By means of a cascade theory, we have derived analyti- 
cal ly the temperature spectra which confirm the results of the dimensional 
theories. The heating by a laser beam introduces the following two 
effects: 

(1) In view of the increased conductivity by the absorption, the 
rate of thermal dissipation t\   increases, and, consequently, the 
temperature spectrum has a higher value in the inertia subrange, and a 
lower value in the dissipation subrange.  For the same reason, the 
critical wavenumber separating the two subranges occurs at a lower value. 

(2) The laser beam has an inhomogeneous profile, denoted by the 
beam factor y   (see Eq. (35b)).  Since the inhomogeneity is usually weak, 
the powers -5/3 and -13/3 are modified slightly, with a negative and a 
positive correction term in the inertia and dissipation laws, 
respectively (see Eqs. (71) and (73)). 
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